fulltext.study @t Gmail

Osteogenic and adipogenic differentiation of rat bone marrow cells on non-mulberry and mulberry silk gland fibroin 3D scaffolds

Paper ID Volume ID Publish Year Pages File Format Full-Text
9036 615 2009 12 PDF Available
Title
Osteogenic and adipogenic differentiation of rat bone marrow cells on non-mulberry and mulberry silk gland fibroin 3D scaffolds
Abstract

This study investigates the potential of 3D silk scaffolds fabricated using tropical tasar non-mulberry, Antheraea mylitta and mulberry, Bombyx mori silk gland fibroin proteins as substrate for osteogenic and adipogenic differentiation of rat bone marrow cells (BMCs). The scaffolds are mechanically robust and show homogenous pore distribution with high porosity and interconnected pore walls. Low immunogenicity of fabricated silk scaffolds as estimated through TNF α release indicates its potential as future biopolymeric graft material. Rat bone marrow cells cultured on scaffolds for 28 days under static conditions in osteogenic and adipogenic media respectively led to induction of differentiation. Proliferation and spreading of fibroblasts and bone marrow cells on silk scaffolds were observed to be dependent on scaffold porosity as revealed through confocal microscopic observations. Histological analysis shows osteogenic differentiation within silk scaffolds resulting in extensive mineralization in the form of deposited nodules as observed through intense Alizarin Red S staining. Similarly, adipogenesis was marked by the presence of lipid droplets within scaffolds on staining with Oil Red O. Real-time PCR studies reveal higher transcript levels for osteopontin (Spp1), osteocalcin (Bglap2) and osteonectin (Sparc) genes under osteogenic conditions. Similarly, upregulated adipogenic gene expression was observed within A. mylitta and B. mori scaffolds under adipogenic conditions for Peroxisome proliferator activated receptor gamma (PPARγ2), lipoprotein lipase (LPL) and adipocyte binding protein (aP2) genes. The results suggest suitability of silk fibroin protein 3D scaffolds as natural biopolymer for potential bone and adipose tissue engineering applications.

Keywords
Silk fibroin; Osteogenesis; Adipogenesis; Biomaterial; Tissue engineering
First Page Preview
Osteogenic and adipogenic differentiation of rat bone marrow cells on non-mulberry and mulberry silk gland fibroin 3D scaffolds
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 30, Issue 28, October 2009, Pages 5019–5030
Authors
, ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us