fulltext.study @t Gmail

The use of nanoscale topography to modulate the dynamics of adhesion formation in primary osteoblasts and ERK/MAPK signalling in STRO-1+ enriched skeletal stem cells

Paper ID Volume ID Publish Year Pages File Format Full-Text
9044 615 2009 10 PDF Available
Title
The use of nanoscale topography to modulate the dynamics of adhesion formation in primary osteoblasts and ERK/MAPK signalling in STRO-1+ enriched skeletal stem cells
Abstract

The physiochemical characteristics of a material with in vivo applications are critical for the clinical success of the implant and regulate both cellular adhesion and differentiated cellular function. Topographical modification of an orthopaedic implant may be a viable method to guide tissue integration and has been shown in vitro to dramatically influence osteogenesis, inhibit bone resorption and regulate integrin mediated cell adhesion. Integrins function as force dependant mechanotransducers, acting via the actin cytoskeleton to translate tension applied at the tissue level to changes in cellular function via intricate signalling pathways. In particular the ERK/MAPK signalling cascade is a known regulator of osteospecific differentiation and function. Here we investigate the effects of nanoscale pits and grooves on focal adhesion formation in human osteoblasts (HOBs) and the ERK/MAPK signalling pathway in mesenchymal populations. Nanopit arrays disrupted adhesion formation and cellular spreading in HOBs and impaired osteospecific differentiation in skeletal stem cells. HOBs cultured on 10 μm wide groove/ridge arrays formed significantly less focal adhesions than cells cultured on planar substrates and displayed negligible differentiation along the osteospecific lineage, undergoing up-regulations in the expression of adipospecific genes. Conversely, osteospecific function was correlated to increased integrin mediated adhesion formation and cellular spreading as noted in HOBS cultured on 100 μm wide groove arrays. Here osteospecific differentiation and function was linked to focal adhesion growth and FAK mediated activation of the ERK/MAPK signalling pathway in mesenchymal populations.

Keywords
Osteoblasts; Mesenchymal stem cells; Focal adhesions; Nanotopography; ERK/MAPK
First Page Preview
The use of nanoscale topography to modulate the dynamics of adhesion formation in primary osteoblasts and ERK/MAPK signalling in STRO-1+ enriched skeletal stem cells
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 30, Issue 28, October 2009, Pages 5094–5103
Authors
, , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us