fulltext.study @t Gmail

Synthesis, characterization and biodegradation of functionalized amino acid-based poly(ester amide)s

Paper ID Volume ID Publish Year Pages File Format Full-Text
9080 617 2010 10 PDF Available
Title
Synthesis, characterization and biodegradation of functionalized amino acid-based poly(ester amide)s
Abstract

A series of biodegradable functional amino acid-based poly(ester amide)s (PEA-AG) were designed and synthesized by the solution co-polycondensation of amino acid (l-phenylalanine and dl-2-allylglycine) based monomers and dicarboxylic acid based monomers. Pendant carbon–carbon double bonds located in the dl-2-allylglycine were incorporated into these PEA-AGs, and the double bond contents could be adjusted by tuning the feed ratio of l-phenylalanine to dl-2-allylglycine monomers. Chemical structures of this new functional PEA-AG family were confirmed by FTIR and NMR spectra. The thermal properties of these polymers were investigated; increasing the methylene chain in both the amino acid and dicarboxlic acid segments resulted in a reduction in the polymer glass-transition temperature. The short-term in vitro biodegradation properties of PEA-AGs were investigated as a function of PEA-AG chemical structures and enzymes. Based on the weight loss data, PEA-AGs biodegraded much faster in an enzyme solution than in a PBS buffer solution. The utility of the pendant functional carbon–carbon double bonds in PEA-AG was demonstrated by synthesizing additional functional PEA derivatives. The incorporation of the functional pendant carbon–carbon double bonds along the PEA-AG chains could significantly expand the biomedical applications of these functional PEA-AGs via either their capability to conjugate bioactive agents or prepare additional useful functional derivatives.

Keywords
Poly(ester amide)s; Biodegradation; Double bond; Amino acid
First Page Preview
Synthesis, characterization and biodegradation of functionalized amino acid-based poly(ester amide)s
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 31, Issue 14, May 2010, Pages 3745–3754
Authors
, ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering