fulltext.study @t Gmail

The enhanced characteristics of osteoblast adhesion to photofunctionalized nanoscale TiO2 layers on biomaterials surfaces

Paper ID Volume ID Publish Year Pages File Format Full-Text
9088 617 2010 13 PDF Available
Title
The enhanced characteristics of osteoblast adhesion to photofunctionalized nanoscale TiO2 layers on biomaterials surfaces
Abstract

Recently, UV photofunctionalization of titanium has been shown to be effective in enhancing osteogenic environment around this functional surface, in particular for the use of endosseous implants. However, the underlying mechanism remains unknown and its potential application to other tissue engineering materials has never been explored. We determined whether adhesion of a single osteoblast is enhanced on UV-treated nano-thin TiO2 layer with virtually no surface roughness or topographical features. Rat bone marrow-derived osteoblasts were cultured on UV-treated or untreated 200-nm thick TiO2 sputter-coated glass plates. After an incubation of 3 h, the mean critical shear force required to initiate detachment of a single osteoblast was determined to be 1280 ± 430 nN on UV-treated TiO2 surfaces, which was 2.5-fold greater than the force required on untreated TiO2 surfaces. The total energy required to complete the detachment was 37.0 ± 23.2 pJ on UV-treated surfaces, 3.5-fold greater than that required on untreated surfaces. Such substantial increases in single cell adhesion were also observed for osteoblasts cultured for 24 h. Osteoblasts on UV-treated TiO2 surfaces were larger and characterized with increased levels of vinculin expression and focal contact formation. However, the density of vinculin or focal contact was not influenced by UV treatment. In contrast, both total expression and density of actin fibers increased on UV-treated surfaces. Thin layer TiO2 coating and UV treatment of Co–Cr alloy and PTFE membrane synergistically resulted in a significant increase in the ability of cell attachment and osteoblastic production of alkaline phosphatase. These results indicated that the adhesive nature of a single osteoblast is substantially enhanced on UV-treated TiO2 surfaces, providing the first evidence showing that each individual cell attached to these surfaces is substantially more resistant to exogenous load potentially from blood and fluid flow and mechanical force in the initial stage of in vivo biological environment. This enhanced osteoblast adhesion was supported synergistically but disproportionately by enhancement in focal adhesion and cytoskeletal developments. Also, this study demonstrated that UV treatment is effective on nano-thin TiO2 depositioned onto non-Ti materials to enhance their bioactivity, providing a basis for TiO2-mediated photofunctionalization of biomaterials, a new method of developing functional biomaterials.

Keywords
Bone–titanium integration; Vinculin; Osseointegration; Actin; Titanium; UV
First Page Preview
The enhanced characteristics of osteoblast adhesion to photofunctionalized nanoscale TiO2 layers on biomaterials surfaces
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 31, Issue 14, May 2010, Pages 3827–3839
Authors
, , , , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us