fulltext.study @t Gmail

In vivo engineering of a functional tendon sheath in a hen model

Paper ID Volume ID Publish Year Pages File Format Full-Text
9095 617 2010 9 PDF Available
In vivo engineering of a functional tendon sheath in a hen model

Repair of injured tendon sheath remains a major challenge and this study explored the possibility of in vivo reconstruction of a tendon sheath with tendon sheath derived cells and polyglycolic acid (PGA) fibers in a Leghorn hen model. Total 55 Leghorn hens with a 1 cm tendon sheath defect created in the left middle toe of each animal were randomly assigned into: (1) experimental group (n = 19) that received a cell-PGA construct; (2) scaffold control group (n = 18) that received a cell-free PGA scaffold; (3) blank control group (n = 18) with the defect untreated. Tendon sheath cells were isolated, in vitro expanded, and seeded onto PGA scaffolds. After in vitro culture for 7 days, the constructs were in vivo implanted to repair the sheath defects. Alcian blue staining confirmed the ability of cultured cells to produce specific matrices containing acidic carboxyl mucopolysaccharide (mainly hyaluronic acid). In addition, the engineered sheath formed a relatively mature structure at 12 weeks post-surgery, which was similar to that of native counterpart, including a smooth inner surface, a well-developed sheath histological structure with a clear space between the tendon and the engineered sheath. More importantly, Work of Flexion assay revealed that the tendons needed less power consumption to glide inside the engineered sheath when compared to the tendons which were surrounded by scar-repaired tissues, indicating that the engineered sheaths had gained the function to a certain extent of preventing tendon adhesion. Taken together, these results suggest that tendon sheaths that are functionally and structurally similar to native sheaths are possible to be engineered in vivo using tendon sheath cells and PGA scaffolds.

Engineered tendon sheath; Tendon adhesion; Tendon sheath derived cells; Acidic carboxyl mucopolysaccharide; Work of flexion assay
First Page Preview
In vivo engineering of a functional tendon sheath in a hen model
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 31, Issue 14, May 2010, Pages 3894–3902
, , , , , ,
Physical Sciences and Engineering Chemical Engineering Bioengineering