fulltext.study @t Gmail

Intra-uterine tissue engineering of full-thickness skin defects in a fetal sheep model

Paper ID Volume ID Publish Year Pages File Format Full-Text
9097 617 2010 10 PDF Available
Title
Intra-uterine tissue engineering of full-thickness skin defects in a fetal sheep model
Abstract

In spina bifida the neural tube fails to close during the embryonic period and it is thought that prolonged exposure of the unprotected spinal cord to the amniotic fluid during pregnancy causes additional neural damage. Intra-uterine repair might protect the neural tissue from exposure to amniotic fluid and might reduce additional neural damage. Biodegradable collagen scaffolds may be useful in case of fetal therapy for spina bifida, but biochemical properties need to be studied. The aim of this study was to investigate whether biodegradable collagen scaffolds can be used to treat full-thickness fetal skin defects. We hypothesized that the pro-angiogenic growth factors VEGF and FGF2 would enhance vascularization, epidermialization and lead to improved wound healing. To investigate the effect of these two growth factors, a fetal sheep model for skin defects was used. Compared to wounds treated with bare collagen scaffolds, wounds treated with growth factor-loaded scaffolds showed excessive formation of capillaries and less myofibroblasts were present in these wounds, leading to less contraction. This study has demonstrated that collagen scaffolds can be used to treat fetal skin defects and that the combination of collagen scaffolds with VEGF and FGF2 had a beneficial effect on wound healing.

Keywords
Spina bifida; Fetal wound healing; Intra-uterine repair; Collagen scaffold; Vascular endothelial growth factor; Basic fibroblast growth factor
First Page Preview
Intra-uterine tissue engineering of full-thickness skin defects in a fetal sheep model
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 31, Issue 14, May 2010, Pages 3910–3919
Authors
, , , , , , , , , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us