fulltext.study @t Gmail

The behaviour of neural stem cells on polyhydroxyalkanoate nanofiber scaffolds

Paper ID Volume ID Publish Year Pages File Format Full-Text
9103 617 2010 9 PDF Available
Title
The behaviour of neural stem cells on polyhydroxyalkanoate nanofiber scaffolds
Abstract

Polyhydroxyalkanoates (PHA) have demonstrated their potentials as medical implant biomaterials. Neural stem cells (NSCs) grown on/in PHA scaffolds may be useful for repairing central nervous system (CNS) injury. To investigate this possibility, nanofiber matrices (scaffolds) prepared from several PHA via a novel phase separation process were studied to mimic natural extracellular matrix (ECM), and rat-derived NSCs grown in the PHA matrices were characterized regarding their in vitro differentiation behaviors. All three PHA materials including poly(3-hydroxybutyrate) (PHB), copolymer of 3-hydroxybutyrate and 4-hydroxybutyrate (P3HB4HB), and copolymer of 3-hydroxybutyrate and 3-hydroxyhexanoate (PHBHHx) supported NSC growth and differentiation both on their 2D films and 3D matrices. Among three PHA nanofiber matrices, PHBHHx one showed the strongest potentials to promote NSC differentiation into neurons which is beneficial for CNS repair. Compared to the 2D films, 3D nanofiber matrices appeared to be more suitable for NSC attachment, synaptic outgrowth and synaptogenesis. It was suggested that PHBHHx nanofiber scaffolds (matrices) that promote NSC growth and differentiation, can be developed for treating central nervous system injury.

Keywords
PHB; Polyhydroxyalkanoates; Nanofiber; Matrices; Scaffold; Neural stem cells
First Page Preview
The behaviour of neural stem cells on polyhydroxyalkanoate nanofiber scaffolds
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 31, Issue 14, May 2010, Pages 3967–3975
Authors
, , , , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us