fulltext.study @t Gmail

Self-assembled octapeptide scaffolds for in vitro chondrocyte culture

Paper ID Volume ID Publish Year Pages File Format Full-Text
914 69 2013 9 PDF Available
Title
Self-assembled octapeptide scaffolds for in vitro chondrocyte culture
Abstract

Nature has evolved a variety of creative approaches to many aspects of materials synthesis and microstructural control. Molecular self-assembly is a simple and efficient way to fabricate complex nanostructures such as hydrogels. We have recently investigated the gelation properties of a series of ionic-complementary peptides based on the alternation of non-polar hydrophobic and polar hydrophilic residues. In this work we focus on one specific octapeptide, FEFEFKFK (F, phenylalanine; E, glutamic acid; K, lysine). This peptide was shown to self-assemble in solution and form β-sheet-rich nanofibres which, above a critical gelation concentration, entangle to form a self-supporting hydrogel. The fibre morphology of the hydrogel was analysed using transmission electron microscopy and cryo-scanning electron microscopy illustrating a dense fibrillar network of nanometer size fibres. Oscillatory rheology results show that the hydrogel possesses visco-elastic properties. Bovine chondrocytes were used to assess the biocompatibility of the scaffolds over 21 days under two-dimensional (2-D) and three-dimensional (3-D) cell culture conditions, particularly looking at cell morphology, proliferation and matrix deposition. 2-D culture resulted in cell viability and collagen type I deposition. In 3-D culture the mechanically stable gel was shown to support the viability of cells, the retention of cell morphology and collagen type II deposition. Subsequently the scaffold may serve as a template for cartilage tissue engineering.

Keywords
Self-assembly; Octapeptides; Hydrogels; Cell culture; Chondrocytes
First Page Preview
Self-assembled octapeptide scaffolds for in vitro chondrocyte culture
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Acta Biomaterialia - Volume 9, Issue 1, January 2013, Pages 4609–4617
Authors
, , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us