fulltext.study @t Gmail

Addressing the problem of cationic lipid-mediated toxicity: The magnetoliposome model

Paper ID Volume ID Publish Year Pages File Format Full-Text
9199 620 2009 11 PDF Available
Title
Addressing the problem of cationic lipid-mediated toxicity: The magnetoliposome model
Abstract

The high biocompatibility and versatile nature of liposomes made these particles keystone components in many hot-topic research areas. For transfection and cell labelling purposes, synthetic cationic lipids are often added, but in most studies, little attention has been paid to their cytotoxic effects. In the present work, cationic magnetoliposomes (MLs), i.e. iron oxide cores enwrapped by a phospholipid bilayer (dimyristoylphosphatidylcholine or sphingomyelin) doped with cationic lipids (1,2-distearoyl-3-trimethylammonium propane), serve as a model to examine cationic lipid toxicity. Mechanisms of cytotoxic effects were found to be either dependent or independent of actual particle internalisation according to data obtained in the absence or presence of several endocytosis inhibitors. The former seem to be caused by the generation of reactive oxygen species (ROS) leading to a Ca2+ influx at high ROS levels. The latter are due to a destabilisation of the cell plasma membrane upon transfer of the cationic lipid from the ML bilayer into the plasma membrane. However, these adverse effects can be diminished by the use of a ROS scavenger, a Ca2+-channel blocker or by modulating the liposome size, lipid bilayer constitution or by stabilising the membrane by anchoring it on a solid core. Careful attention must be paid in terms of assessing cell viability as the effects are highly time dependent and the data suggest the incompatibility of using the well-known MTT assay when high levels of ROS species are generated.

Keywords
(cationic) Lipid; Liposome; Magnetoliposome; Cytotoxicity; Cell viability; MTT assay
First Page Preview
Addressing the problem of cationic lipid-mediated toxicity: The magnetoliposome model
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 30, Issue 22, August 2009, Pages 3691–3701
Authors
, , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us