fulltext.study @t Gmail

Potential of stem/progenitor cell cultures within polyester fleeces to regenerate renal tubules

Paper ID Volume ID Publish Year Pages File Format Full-Text
9202 620 2009 10 PDF Available
Title
Potential of stem/progenitor cell cultures within polyester fleeces to regenerate renal tubules
Abstract

The cell biological mechanism controlling the regeneration of renal tubules in renal failure after application of stem/progenitor cells is subject of actual research. Unsolved issues are the integration of stem/progenitor cells in a diseased organ environment, the differentiation into epithelial tissue and the formation of tubules in a spatial environment. Following this therapeutic strategy new biomaterials have to be found promoting spatial development of tubules. To obtain new information about the growth of tubules renal stem/progenitor cells from neonatal rabbit kidney were isolated and mounted in a tissue carrier between a selection of commercially available polyester fleeces. This procedure replaces coating by extracellular matrix proteins and creates an artificial interstitium supporting development of tubules. Perfusion culture was performed with chemically defined IMDM containing aldosterone as tubulogenic factor. Polyester fleeces were investigated by scanning electron microscopy. The spatial development of tubules was registered on whole-mount specimens and on cryosections labeled with SBA and antibodies indicating tubule differentiation. It is found that some polyester fleeces promote the spatial development of tubules between the fibers, whereat each of them produces its individual growth pattern.

Keywords
Tissue engineering; Perfusion culture; Kidney; Tubule; Polyester fleece; Artificial interstitium
First Page Preview
Potential of stem/progenitor cell cultures within polyester fleeces to regenerate renal tubules
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 30, Issue 22, August 2009, Pages 3723–3732
Authors
, , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us