fulltext.study @t Gmail

A mixture model for water uptake, degradation, erosion and drug release from polydisperse polymeric networks

Paper ID Volume ID Publish Year Pages File Format Full-Text
9236 622 2010 11 PDF Available
Title
A mixture model for water uptake, degradation, erosion and drug release from polydisperse polymeric networks
Abstract

We introduce a general class of mixture models suitable to describe water-dependent degradation and erosion of biodegradable polymers in conjunction with drug release. The ability to predict and quantify degradation and erosion has direct impact in a variety of biomedical applications and is a useful design tool for biodegradable implants and tissue engineering scaffolds. The model is based on a finite number of constituents describing the polydisperse polymeric system, each representing chains of an average size, and two additional constituents, water and drug. Hydrolytic degradation of individual chains occurs at the molecular level and mixture constituents diffuse individually accordingly to Fick's 1st law at the bulk level – such analysis confers a multi-scale aspect to the resulting reaction–diffusion system. A shift between two different types of behavior, each identified to surface or bulk erosion, is observed with the variation of a single non-dimensional parameter measuring the relative importance of the mechanisms of reaction and diffusion. Mass loss follows a sigmoid decrease in bulk eroding polymers, whereas decreases linearly in surface eroding polymers. Polydispersity influences degradation and erosion of bulk eroding polymers and drug release from unstable surface eroding matrices is dramatically enhanced in an erosion-controlled release.

Keywords
Modeling; Hydrolysis; Biodegradation; Bioerosion; Controlled drug release; Polylactic acid
First Page Preview
A mixture model for water uptake, degradation, erosion and drug release from polydisperse polymeric networks
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 31, Issue 11, April 2010, Pages 3032–3042
Authors
, ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us