fulltext.study @t Gmail

2-Methacryloyloxyethyl phosphorylcholine polymer (MPC)-coating improves the transfection activity of GALA-modified lipid nanoparticles by assisting the cellular uptake and intracellular dissociation of plasmid DNA in primary hepatocytes

Paper ID Volume ID Publish Year Pages File Format Full-Text
9297 624 2010 8 PDF Available
Title
2-Methacryloyloxyethyl phosphorylcholine polymer (MPC)-coating improves the transfection activity of GALA-modified lipid nanoparticles by assisting the cellular uptake and intracellular dissociation of plasmid DNA in primary hepatocytes
Abstract

We previously reported that modification of GALA peptide on the surface of liposomes enhanced fusion with endosomal membrane, and cytoplasmic release of encapsulated macromolecules. We report herein that an additional coating of GALA-modified liposomes with 2-methacryloyloxyethyl phosphorylcholine (MPC) polymer resulted in a two order of magnitude enhancement in the transfection activity of encapsulating plasmid DNA (pDNA). Quantification of the delivered gene copies in whole cells and isolated nuclei revealed that the increase of transfection activity can be attributed to improved efficiencies in cellular uptake and post-nuclear delivery processes. Imaging studies revealed that the intracellular dissociation of pDNA from the lipid envelope is enhanced by GALA modification and further coating with MPC polymer in a stepwise manner. The MPC polymer-coating decreased the ζ-potential of GALA-modified liposomes, suggesting that it assisted in the functional display of negatively charged GALA on the cationic liposomes by providing shielding from mutual electrostatic interactions. Collectively, these data indicate that MPC polymer-coating induced the fusogenic activity of the GALA-modified envelope with endosomes, leading to a more effective cytoplasmic release pDNA. The extensive fusion of the lipid envelope may also reduce electrostatic interactions between mRNA and cationic lipid components, thereby resulting in an enhancement in the translation process.

Keywords
Isolated hepatocyte; Gene delivery; Intracellular trafficking; Endosomal escape; GALA; MPC polymer
First Page Preview
2-Methacryloyloxyethyl phosphorylcholine polymer (MPC)-coating improves the transfection activity of GALA-modified lipid nanoparticles by assisting the cellular uptake and intracellular dissociation of plasmid DNA in primary hepatocytes
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 31, Issue 24, August 2010, Pages 6355–6362
Authors
, , , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us