fulltext.study @t Gmail

In vitro assessment of the pro-inflammatory potential of β-hairpin peptide hydrogels

Paper ID Volume ID Publish Year Pages File Format Full-Text
9301 625 2008 6 PDF Available
Title
In vitro assessment of the pro-inflammatory potential of β-hairpin peptide hydrogels
Abstract

The pro-inflammatory potential of β-hairpin peptide hydrogels (MAX1 and MAX8) was assessed in vitro by measuring the cellular response of J774 mouse peritoneal macrophages cultured on the hydrogel surfaces. An enzyme-linked immunosorbent assay (ELISA) was used to measure the level of TNF-α, a pro-inflammatory cytokine, secreted by cells cultured on the gel surfaces. Both bulk and thin films of gels did not elicit TNF-α secretion from the macrophages. In addition, live/dead assays employing laser scanning confocal microscopy (LSCM) and phase-contrast light micrographs show the hydrogel surfaces are non-cytotoxic toward the macrophages and allow the cells to adopt healthy morphologies. When macrophages were activated with lipopolysaccharide (LPS), a known bacterial pathogen that activates an innate immune response, an increase in the TNF-α titers by two orders of magnitude was observed. On LPS induction, macrophages displayed a decrease in cell density, enlarged nuclei, and an increase in cytoplasmic granularity, all characteristics of activated macrophages indicating that the cells are still capable of reacting to insult. The data presented herein indicate that MAX1 and MAX8 gels do not elicit macrophage activation in vitro and suggest that these materials are excellent candidates for in vivo assessment in appropriate animal models.

Keywords
Hydrogel; Peptide; Self-assembly; Tissue engineering; Macrophage; Immunogenicity
First Page Preview
In vitro assessment of the pro-inflammatory potential of β-hairpin peptide hydrogels
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 29, Issue 31, November 2008, Pages 4164–4169
Authors
, , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us