fulltext.study @t Gmail

The effect of topography of polymer surfaces on platelet adhesion

Paper ID Volume ID Publish Year Pages File Format Full-Text
9337 627 2010 13 PDF Available
Title
The effect of topography of polymer surfaces on platelet adhesion
Abstract

In this study, the effect of surface topography on fibrinogen and platelet adsorption was investigated. High aspect ratio surface features, in the submicron to nanometer range, were constructed on the poly- (lactic-co-glycolic-acid) (PLGA) films. The topographic surfaces were fabricated by solvent-mediated polymer casting on a master template. Fibrinogen adsorption and platelets adhesion on these topographic surfaces were quantified by enzyme linked immunosorbent assay (ELISA) and lactate dehydrogenase (LDH) assay respectively, while the activation of platelets was quantified by flow cytometric analysis using fluorescein isothiocyanate (FITC) tagging. The lowest fibrinogen adsorption amount and platelet activity was observed on surfaces with specific topographical features in the submicron range with a significant reduction in adhesion when compared to the pristine PLGA films. The topographical parameters found to induce low levels of fibrinogen adsorption and platelet response were high aspect ratio structures (>3:1) with reduced interspacing (<200 nm) or high density. The results signify that topographical manipulation of thrombogenic surfaces of biodegradable polymers is a feasible approach for reducing their thrombogenicity.

Keywords
Anti-thrombotic materials; Platelet adhesion; Nanotopography; High aspect ratio; Poly(lactic-co-glycolic-acid)
First Page Preview
The effect of topography of polymer surfaces on platelet adhesion
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 31, Issue 7, March 2010, Pages 1533–1545
Authors
, , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us