fulltext.study @t Gmail

Differentiation of human bone marrow mesenchymal stem cells grown in terpolyesters of 3-hydroxyalkanoates scaffolds into nerve cells

Paper ID Volume ID Publish Year Pages File Format Full-Text
9354 627 2010 8 PDF Available
Title
Differentiation of human bone marrow mesenchymal stem cells grown in terpolyesters of 3-hydroxyalkanoates scaffolds into nerve cells
Abstract

Polyhydroxyalkanoates, abbreviated as PHA, have been studied for medical applications due to their suitable mechanical properties, blood and tissue tolerance and in vivo biodegradability. As a new member of PHA family, terpolyester of 3-hydroxybutyrate, 3-hydroxyvalerate and 3-hydroxyhexanoate, abbreviated as PHBVHHx, was compared with polylactic acid (PLA), copolyester of 3-hydroxybutyrate and 3-hydroxyhexanoate (PHBHHx) for their respective functions leading to differentiation of human bone marrow mesenchymal stem cell (hBMSC) into nerve cells. Results indicated that 3D scaffolds promoted the differentiation of hBMSC into nerve cells more intensively compared with 2D films. Smaller pore sizes of scaffolds increased differentiation of hBMSC into nerve cells, whereas decreased cell proliferation. PHBVHHx scaffolds with pore sizes of 30–60 μm could be used in nerve tissue engineering for treatment of nerve injury. The above results were supported by scanning electron microscope (SEM) and confocal microscopy observation on attachment and growth of hBMSCs on PLA, PHBHHx and PHBVHHx, and by CCK-8 evaluation of cell proliferation. In addition, expressions of nerve markers nestin, GFAP and β-III tubulin of nerve cells differentiated from hBMSC grown in PHBVHHx scaffolds were confirmed by real-time PCR.

Keywords
PHB; PLA; Terpolyester; Polyhydroxyalkanoates; Human bone marrow mesenchymal stem cells; Tissue engineering
First Page Preview
Differentiation of human bone marrow mesenchymal stem cells grown in terpolyesters of 3-hydroxyalkanoates scaffolds into nerve cells
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 31, Issue 7, March 2010, Pages 1691–1698
Authors
, , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us