fulltext.study @t Gmail

A collagen-mimetic triple helical supramolecule that evokes integrin-dependent cell responses

Paper ID Volume ID Publish Year Pages File Format Full-Text
9382 627 2010 10 PDF Available
Title
A collagen-mimetic triple helical supramolecule that evokes integrin-dependent cell responses
Abstract

Collagen is an abundantly distributed extracellular matrix protein in mammalian bodies that maintains structural integrity of the organs and tissues. Besides its function as a structural protein, collagen has various biological functions which regulate cell adhesion, migration and differentiation. In order to develop totally synthetic collagen-surrogates, we recently reported a basic concept for preparing collagen-like triple helical supramolecules based on the self-assembly of staggered trimeric peptides with self-complementary shapes. In this paper, we add one of the specific cellular functions of the native collagen to the collagen-mimetic supramolecule. We synthesized a self-assembling peptide unit containing the integrin-binding sequence Gly-Phe-Hyp-Gly-Glu-Arg. The supramolecule carrying the sequence exhibited significant binding activity to human dermal fibroblasts. The supramolecular structure was found to be essential for function in in vitro cell culture. Cell adhesion was shown to be comparable to that of native collagen, and was further demonstrated to be mediated solely by integrin α2β1. Well-grown focal contacts and stress fibers were observed in cells spread on the supramolecular collagen-mimetic. The results demonstrate the potential of peptide-based artificial collagen as a biomaterial for regulating specific cellular function and fate.

Keywords
Collagen; Cell adhesion; ECM (extracellular matrix); Integrin; PeptideAcm, acetamidomethyl; AP, alkaline phosphatase; BSA, bovine serum albumin; CD, circular dichroism; DMEM, Dulbecco's modified Eagle's medium; ECM, extracellular matrix; EDTA, ethylenedia
First Page Preview
A collagen-mimetic triple helical supramolecule that evokes integrin-dependent cell responses
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 31, Issue 7, March 2010, Pages 1925–1934
Authors
, , , , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us