fulltext.study @t Gmail

The stress relaxation characteristics of composite matrices etched to produce nanoscale surface features

Paper ID Volume ID Publish Year Pages File Format Full-Text
9411 629 2009 8 PDF Available
Title
The stress relaxation characteristics of composite matrices etched to produce nanoscale surface features
Abstract

Many synthetic and xenogenic natural matrices have been explored in tissue regeneration, however, they lack either mechanical strength or cell colonization characteristics found in natural tissue. Moreover natural matrices such as small intestinal submucosa (SIS) lack sample to sample homogeneity, leading to unpredictable clinical outcomes. This work explored a novel fabrication technique by blending together the useful characteristics of synthetic and natural polymers to form a composite structure by using a NaOH etching process that produces nanoscale surface features. The composite scaffold was formed by sandwiching a thin layer of PLGA between porous layers of gelatin–chitosan. The etching process increased the surface roughness of PLGA membrane, allowing easy spreading of the hydrophilic gelatin–chitosan solution on its hydrophobic surface and reducing the scaffold thickness by nearly 50% than otherwise. The viscoelastic properties of the scaffold, an area of mechanical analysis which remains largely unexplored in tissue regeneration was assessed. Stress relaxation experiments of the “ramp and hold” type performed at variable ranges of temperature (25 °C and 37 °C), loading rates (3.125% s−1 and 12.5% s−1) and relaxation times (60 s, 100 s and 200 s) found stress relaxation to be sensitive to temperature and the loading rate but less dependent on the relaxation time. Stress relaxation behavior of the composite matrix was compared with SIS structures at 25 °C (hydrated), 3.125% s−1 loading rate and 100 s relaxation time which showed that the synthetic matrix was found to be strain softening as compared to the strain hardening behavior exhibited by SIS. Popularly used quasi-linear viscoelastic (QLV) model to describe biomechanics of soft tissues was utilized. The QLV model predicted the loading behavior with an average error of 3%. The parameters of the QLV model predicted using nonlinear regression analysis appear to be in concurrence with soft tissues.

Keywords
Stress relaxation; Composites; PLGA; Chitosan; SIS; Scaffolds
First Page Preview
The stress relaxation characteristics of composite matrices etched to produce nanoscale surface features
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 30, Issue 5, February 2009, Pages 703–710
Authors
, , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us