fulltext.study @t Gmail

The role of aragonite matrix surface chemistry on the chondrogenic differentiation of mesenchymal stem cells

Paper ID Volume ID Publish Year Pages File Format Full-Text
9420 629 2009 10 PDF Available
Title
The role of aragonite matrix surface chemistry on the chondrogenic differentiation of mesenchymal stem cells
Abstract

In the present research we study the effects of surface chemistry of an aragonite crystalline biomatrix on the chondrogenesis of mesenchymal stem cells (MSCs). An aragonite matrix obtained from the coral Porites lutea and a gold-coated P. lutea matrix were seeded with MSCs, with and without the addition of growth factors (GFs). Scanning electron microscopy, histochemical staining, immunofluorescence, biochemical analyses and quantitative polymerase chain reaction showed that the chemistry of the matrix influenced the differentiation process of the MSCs. The calcium carbonate composition of the coral promoted osteogenesis, while impeding cell-material contact (by gold coating) altered the differentiation lineage of MSCs towards chondrogenic fate. Supplementation of the culture medium with GFs intensified the influence of the surface composition on the differentiation of MSCs, and the synergistic effect of the biomatrix surface composition and the GFs induced chondrogenesis and facilitated maintenance of the chondrocyte phenotype. Therefore, we suggest that scaffolding material candidates for tissue engineering should be examined for their effects on the MSCs differentiation process and their effect on signal transduction events in the cells.

Keywords
Cartilage tissue engineering; Aragonite biomaterial; Surface modification; Mesenchymal stem cells (MSCs); Differentiation
First Page Preview
The role of aragonite matrix surface chemistry on the chondrogenic differentiation of mesenchymal stem cells
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 30, Issue 5, February 2009, Pages 770–779
Authors
, ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering