fulltext.study @t Gmail

Gene delivery in vitro and in vivo from bioreducible multilayered polyelectrolyte films of plasmid DNA

Paper ID Volume ID Publish Year Pages File Format Full-Text
9439 629 2009 12 PDF Available
Title
Gene delivery in vitro and in vivo from bioreducible multilayered polyelectrolyte films of plasmid DNA
Abstract

Layer-by-layer (LbL) films were assembled on flexible stainless steel substrate using plasmid DNA and reducible hyperbranched poly(amido amine) (RHB) polycation. The films were characterized by XPS and their disassembly in reducing conditions confirmed by ellipsometry. Fibroblast and smooth muscle cell attachment and proliferation on DNA/RHB films were indistinguishable from those on control DNA/poly(ethylenimine) (PEI) films. In vitro transfection activity was evaluated using reporter plasmids encoding for secreted alkaline phosphatase (SEAP) and green fluorescent protein (GFP). DNA/RHB films showed higher and longer lasting transfection activity than control DNA/PEI films using SEAP plasmid. It was revealed through the use of GFP plasmid that DNA/RHB films transfected almost the entire cell population growing on the films. In vivo transfection activity was evaluated by subcutaneously implanting a stainless steel substrate coated with the DNA/RHB films containing SEAP plasmid DNA and measuring the levels of SEAP secreted into the blood circulation of rats. It was found that the plasma levels of SEAP peaked at ∼160 ng SEAP/mL five days post-implantation.

Keywords
Layer-by-layer; LBL; DNA; Polyelectrolyte films; In vivo transfection
First Page Preview
Gene delivery in vitro and in vivo from bioreducible multilayered polyelectrolyte films of plasmid DNA
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 30, Issue 5, February 2009, Pages 939–950
Authors
, , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us