fulltext.study @t Gmail

Ligament regeneration using a knitted silk scaffold combined with collagen matrix

Paper ID Volume ID Publish Year Pages File Format Full-Text
9542 635 2008 10 PDF Available
Title
Ligament regeneration using a knitted silk scaffold combined with collagen matrix
Abstract

This study was aimed to develop a new practical ligament scaffold by synergistic incorporation of silk fibers, a knitted structure, and a collagen matrix. The efficacy for ligament tissue engineering was investigated in vitro and in animal models. Cells cultured on a collagen substrate expressed ligament matrix genes at higher levels than those on a silk substrate. The silk scaffold elicited little inflammatory reaction and degraded slowly after subcutaneous implantation in a mouse model. In the rabbit MCL defect model, MCLs treated with a silk + collagen scaffold deposited more collagen, had better mechanical properties, and showed more native microstructure with larger diameter collagen fibrils and stronger scaffold–ligament interface healing than untreated MCLs and those treated with silk scaffolds. These results demonstrated that the knitted silk + collagen sponge scaffold improves structural and functional ligament repair by regulating ligament matrix gene expression and collagen fibril assembly. The findings are the first to highlight the important roles of biomaterials in ligament regeneration biology. Also, the concept of an “internal-space-preservation” scaffold is proposed for the tissue repair under physical loading.

Keywords
Ligament; Tissue engineering; Knitted silk scaffold; Collagen matrix
First Page Preview
Ligament regeneration using a knitted silk scaffold combined with collagen matrix
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 29, Issue 27, September 2008, Pages 3683–3692
Authors
, , , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us