fulltext.study @t Gmail

An in vivo murine model of continuous intramedullary infusion of polyethylene particles

Paper ID Volume ID Publish Year Pages File Format Full-Text
9548 635 2008 5 PDF Available
Title
An in vivo murine model of continuous intramedullary infusion of polyethylene particles
Abstract

Wear debris affects both initial osseointegration and subsequent bone remodeling of total joint replacements (TJRs). To study the complex cascade associated with the continuous generation of particles, a robust animal model is essential. To date, an animal model that incorporates continuously delivered particles to an intramedullary orthopaedic implant has not been available. In this study, we successfully infused clinically relevant ultra high molecular weight polyethylene particles, previously isolated from joint simulator tests, to the intramedullary space of the mouse femur for 4 weeks using a subcutaneous osmotic pump. Reduction of bone volume following the 4-week infusion of UHMWPE was detected by microCT. UHMWPE particles also changed the level of Alkaline Phosphatase expression in the infused femurs. Continuous infusion of particles to the murine bone–implant interface simulated the clinical scenario of local polymer wear particle generation and delivery in humans and can be used to further study the biological processes associated with wear debris particles.

Keywords
Murine model; Continuous infusion; UHMWPE particles; Osteolysis
First Page Preview
An in vivo murine model of continuous intramedullary infusion of polyethylene particles
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 29, Issue 27, September 2008, Pages 3738–3742
Authors
, , , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us