fulltext.study @t Gmail

Soft tissue reactions evoked by implanted gallium phosphide

Paper ID Volume ID Publish Year Pages File Format Full-Text
9555 636 2008 7 PDF Available
Title
Soft tissue reactions evoked by implanted gallium phosphide
Abstract

Neural devices may play an important role in the diagnosis and therapy of several clinical conditions, such as stroke, trauma or neurodegenerative disorders, by facilitating motor and pain control. Such interfaces, chronically implanted in the CNS, need to be biocompatible and have the ability to stimulate and record nerve signals. However, neural devices of today are not fully optimized. Nanostructured surfaces may improve electrical properties and lower evoked tissue responses. Vertical gallium phosphide (GaP) nanowires epitaxially grown from a GaP surface is one way of creating nanostructured electrodes. Thus, we chose to study the soft tissue reactions evoked by GaP surfaces. GaP and the control material titanium (Ti) were implanted in the rat abdominal wall for evaluation of tissue reactions after 1, 6, or 12 weeks. The foreign-body response was evaluated by measuring the reactive capsule thickness and by quantification of ED1-positive macrophages and total cells in the capsule. Furthermore, the concentration of Ga was measured in blood, brain, liver and kidneys. Statistically significant differences were noticed between GaP and Ti at 12 weeks for total and ED1-positive cell densities in the capsule. The chemical analysis showed that the concentration of Ga in brain, liver and kidneys increased during 12 weeks of implantation, indicating loss of Ga from the implant. Taken together, our results show that the biocompatible properties of GaP are worse than those of the well-documented biomaterial Ti.

Keywords
GaP; Foreign-body response; In vivo test; Soft tissue; Immunohistochemistry; Nanowires
First Page Preview
Soft tissue reactions evoked by implanted gallium phosphide
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 29, Issue 35, December 2008, Pages 4598–4604
Authors
, , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering