fulltext.study @t Gmail

The effect of immobilized platelet derived growth factor AA on neural stem/progenitor cell differentiation on cell-adhesive hydrogels

Paper ID Volume ID Publish Year Pages File Format Full-Text
9563 636 2008 8 PDF Available
Title
The effect of immobilized platelet derived growth factor AA on neural stem/progenitor cell differentiation on cell-adhesive hydrogels
Abstract

Neural stem/progenitor cells (NSPCs) hold great promise in regenerative medicine; however, controlling their differentiation to a desired phenotype within a defined matrix is challenging. To guide the differentiation of NSPCs, we first created a cell-adhesive matrix of agarose modified with glycine–arginine–glycine–aspartic acid–serine (GRGDS) and then demonstrated the multipotentiality of NSPCs to differentiate to the three primary cell types of the central nervous system on this matrix: neurons, oligodendrocytes and astrocytes. We then examined whether immobilized platelet derived growth factor AA (PDGF-AA) would promote differentiation similarly to the same soluble factor and found similar percentages of NSPCs differentiated to oligodendrocytes as determined by immunohistochemistry (IHC) and quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Interestingly, the gene expression of the differentiated oligodendrocytes was similar for 2′, 3′-cyclic nucleotide 3′-phosphodiesterase (CNPase) but different for myelin oligodendrocyte glycoprotein (MOG) in the presence of soluble PDGF-AA vs. immobilized PDGF-AA. These results demonstrate for the first time, that it is possible to control the differentiation of NSPCs, and specifically to oligodendrocytes, in cell-adhesive matrices with immobilized PDGF-AA.

Keywords
Neural stem/progenitor cell differentiation; Hydrogel; Growth factor immobilization
First Page Preview
The effect of immobilized platelet derived growth factor AA on neural stem/progenitor cell differentiation on cell-adhesive hydrogels
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 29, Issue 35, December 2008, Pages 4676–4683
Authors
, , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us