fulltext.study @t Gmail

Proliferation of aligned mammalian cells on laser-nanostructured polystyrene

Paper ID Volume ID Publish Year Pages File Format Full-Text
9575 637 2008 11 PDF Available
Proliferation of aligned mammalian cells on laser-nanostructured polystyrene

Biomaterial surface chemistry and nanoscale topography are important for many potential applications in medicine and biotechnology as they strongly influence cell function, adhesion and proliferation. In this work, we present periodic surface structures generated by linearly polarized KrF laser light (248 nm) on polystyrene (PS) foils. These structures have a periodicity of 200–430 nm and a depth of 30–100 nm, depending on the angle of incidence of the laser beam. The changes in surface topography and chemistry were analysed by atomic force microscopy (AFM), advancing water contact-angle measurements, Fourier-transform infrared spectroscopy using an attenuated total reflection device (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS). We show that the surface laser modification results in a significantly enhanced adhesion and proliferation of human embryonic kidney cells (HEK-293) compared to the unmodified polymer foil. Furthermore, we report on the alignment of HEK-293 cells, Chinese hamster ovary (CHO-K1) cells and skeletal myoblasts along the direction of the structures. The results indicate that the presence of nanostructures on the substrates can guide cell alignment along definite directions, and more importantly, in our opinion, that this alignment is only observed when the periodicity is above a critical periodicity value that is cell-type specific.

Cell proliferation; Cell morphology; Laser manufacturing; Nanotopography; Polystyrene
First Page Preview
Proliferation of aligned mammalian cells on laser-nanostructured polystyrene
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 29, Issue 12, April 2008, Pages 1796–1806
, , , , , , , , ,
Physical Sciences and Engineering Chemical Engineering Bioengineering