fulltext.study @t Gmail

The surface modification of silver nanoparticles by phosphoryl disulfides for improved biocompatibility and intracellular uptake

Paper ID Volume ID Publish Year Pages File Format Full-Text
9576 637 2008 10 PDF Available
Title
The surface modification of silver nanoparticles by phosphoryl disulfides for improved biocompatibility and intracellular uptake
Abstract

In order to enhance the biocompatibility and cell affinity of metal nanoparticles for biosensing and drug delivering applications, we prepared the phospholipid derivatives containing disulfide groups to modify silver nanoparticle surfaces. By adding sodium borohydride to reduce both disulfide bonds of the derivatives and silver ions simultaneously, the generated thiol groups can be reacted with newborn silver atoms immediately to generate nanoclusters. The assemblies consisted of either phosphorylcholine (PC) or phosphorylethanolamine (PE) head groups, which made the silver clusters biocompatibile. Transmission electron microscope (TEM) and optical absorption spectra assisted in modulating reaction conditions, demonstrating that a surfactant/Ag ratio of 0.4 led to the formation of uniform, well-dispersed spherical particles about 3.8 nm in diameter. X-ray photoelectron spectra and infrared spectra also illustrated the elemental and molecular structures of nanoparticles. The insertion of rhodamine dye into the surfactant layer enabled the nanoparticles to be used as a fluorescent probe. In cell culture tests, the nanoparticles were internalized into platelet or fibroblast cells in a short period of incubation without harming the cells.

Keywords
Silver nanoparticle; Phosphorylcholine; Disulfide; Uptake; Rhodamine
First Page Preview
The surface modification of silver nanoparticles by phosphoryl disulfides for improved biocompatibility and intracellular uptake
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 29, Issue 12, April 2008, Pages 1807–1816
Authors
, , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us