fulltext.study @t Gmail

Development and analysis of multi-layer scaffolds for tissue engineering

Paper ID Volume ID Publish Year Pages File Format Full-Text
9604 638 2009 12 PDF Available
Title
Development and analysis of multi-layer scaffolds for tissue engineering
Abstract

The development of 3D scaffolds consisting of stacked multi-layered porous sheets featuring microchannels is proposed and investigated in this work. In this concept, the inner-porosity of the sheets allows diffusion of nutrients and signalling products between the layers whereas the microchannels facilitate nutrient supply on all layers as they provide space for the culture medium to be perfused throughout the scaffold. Besides the above, these scaffolds have excellent distribution of the cells as seeding and attaching of the cells occurs on individual layers that are subsequently stacked. In addition, these scaffolds enable gaining local data from within the scaffolds as unstacking of the stacked layers allows for determination of various parameters per layer. Here, we show the proof of this concept by culturing C2C12 pre-myoblasts and A4-4 cells on stacked Poly(l-lactic acid) (PLLA) sheets featuring microchannels. The results obtained for culturing under static conditions clearly indicate that despite inhibited cell proliferation due to nutrient limitations, diffusion between the layers takes place and cells on various layers stay viable and also affect each other. Under dynamic conditions, medium flow through the channels improves nutrient availability to the cells on the various layers, drastically increasing cell proliferation on all layers.

Keywords
3D scaffold; Tissue engineering; Micropatterning; Porosity; Nutrient transport; Cell behaviour
First Page Preview
Development and analysis of multi-layer scaffolds for tissue engineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 30, Issue 31, October 2009, Pages 6228–6239
Authors
, , , , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us