fulltext.study @t Gmail

Modeling the steady-state deformation of the solid phase of articular cartilage

Paper ID Volume ID Publish Year Pages File Format Full-Text
9622 638 2009 8 PDF Available
Title
Modeling the steady-state deformation of the solid phase of articular cartilage
Abstract

The transient response of articular cartilage (AC) to compressive loads has been described by complex multicomponent models. However, the steady-state behaviour is determined by the collagen network which is heterogeneous through the depth of the tissue, a characteristic which is omitted from most theoretical models. Experimental data are now available on the local responses of the network to compressive loads and the aim of this study was to develop minimal models capable of simulating this behaviour. A series of finite element models (FEMs) of AC under load were developed of increasing complexity, assuming the AC was i) completely homogeneous, ii) layered and isotropic and iii) layered and anisotropic. The geometry of the layered cartilage model was based on the recent experimental data. It is shown that a layered transversely isotropic elastic model is required to accurately recreate the experimental data. Stress distributions within the models are analysed, and the relevance of this work to transient modeling of AC is discussed. The work presented is a fundamental step forward in the understanding of the distribution of local physiological stresses and strains in AC, and has applications in modeling chondrocyte mechanotransduction as well as the effects of pathogenesis.

Keywords
Cartilage; Collagen structure; ECM (extracellular matrix); Elasticity; Mechanical properties
First Page Preview
Modeling the steady-state deformation of the solid phase of articular cartilage
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 30, Issue 31, October 2009, Pages 6394–6401
Authors
, , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us