fulltext.study @t Gmail

Supercritical CO2-assisted embossing for studying cell behaviour on microtextured surfaces

Paper ID Volume ID Publish Year Pages File Format Full-Text
9657 641 2008 7 PDF Available
Title
Supercritical CO2-assisted embossing for studying cell behaviour on microtextured surfaces
Abstract

Recently, cell responses to micro- and nanoscale structures have attracted much attention. Although interesting phenomena have been observed, we have encountered some difficulties in elucidating purely topographical effects on cell behaviour. These problems are partially attributable to the introduction of functional groups and the persistence of chemicals during surface processing. In this study, we introduced supercritical CO2-assisted embossing, which plasticizes a polycarbonate plate by dissolving supercritical CO2 and thus can emboss wide-scale patterns onto the plate at a lower temperature than the polycarbonate glass transition temperature. Uniform micro- and nanopatterned surfaces were observed across the whole area of the polycarbonate plate surfaces. Nickel, fluorine, and nitrogen were not detected on the fabricated surfaces, and the surface carbon-to-oxygen ratios were equivalent to the theoretical ratio (C:O = 84.2:15.8) calculated from the polycarbonate molecular structure. Human mesenchymal stem cells were cultured on the fabricated microlens and nanogroove substrata. Cell-adhered areas became smaller on the microlens than on non-treated polycarbonate. Meanwhile, cells aligned along the ridges of nanogrooves with valleys deeper than 90 nm. This supercritical CO2-assisted embossing can produce fine substrates for studying the effects of surface topography of synthetic materials on cell behaviours.

Keywords
Cell adhesion; Cell morphology; Surface topography; Polycarbonate; Mesenchymal stem cell
First Page Preview
Supercritical CO2-assisted embossing for studying cell behaviour on microtextured surfaces
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 29, Issue 34, December 2008, Pages 4494–4500
Authors
, , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us