fulltext.study @t Gmail

Directing phenotype of vascular smooth muscle cells using electrically stimulated conducting polymer

Paper ID Volume ID Publish Year Pages File Format Full-Text
9659 641 2008 11 PDF Available
Title
Directing phenotype of vascular smooth muscle cells using electrically stimulated conducting polymer
Abstract

Vascular smooth muscle cells (VSMCs) isolated from rabbit aorta and immortalised A7r5 cells were cultured on conducting polypyrrole (PPy) substrates and were subjected to a 50 μA sinusoidal electrical stimulation at 0.05, 5 and 500 Hz. These substrates were doped with hyaluronic acid and coated with collagen IV followed by Matrigel® in order to mimic the basement membrane and encourage cell attachment. Increased proliferation and expression of smooth muscle phenotype markers (smooth muscle α-actin and smooth muscle myosin heavy chain) were observed in cultures stimulated at 5 and 500 Hz. This increased proliferation and expression of contractile proteins were found to be significantly decreased when L-type voltage-gated calcium channels (VGCC) were blocked with the drug nifedipine. To the best of our knowledge, this is the first work that demonstrates that VSMCs cultured on a conducting polymer substrate and subject to electrical stimulation not only exhibit enhanced proliferation but can be simultaneously encouraged to increase contractile protein expression. This behaviour is somewhat contrary to the classical definition of smooth muscle contractile and synthetic phenotypes that, in general, requires a modulation in phenotype as a prerequisite for smooth muscle proliferation. This interesting result highlights both the inherent plasticity of vascular smooth muscle cells and the potential of electrical stimulation via conducting polymer substrates to manipulate their behaviour.

Keywords
Smooth muscle cell; Electrical stimulation; Electroactive polymer; Cell activation; Cell proliferation
First Page Preview
Directing phenotype of vascular smooth muscle cells using electrically stimulated conducting polymer
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 29, Issue 34, December 2008, Pages 4510–4520
Authors
, ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us