fulltext.study @t Gmail

Water-soluble superparamagnetic manganese ferrite nanoparticles for magnetic resonance imaging

Paper ID Volume ID Publish Year Pages File Format Full-Text
9721 643 2010 7 PDF Available
Title
Water-soluble superparamagnetic manganese ferrite nanoparticles for magnetic resonance imaging
Abstract

We report here a thermal decomposition approach to the synthesis of water-soluble superparamagnetic manganese ferrite (MnFe2O4) nanoparticles (NPs) for magnetic resonance (MR) imaging applications. In this approach, tetraethylene glycol was utilized as a coordination and stabilization agent, rendering the NPs water-soluble and stable. The formed NPs had a diameter of 7 nm with a narrow size distribution, and were superparamagnetic with a saturated magnetization (Ms) of 39 emu/g. In vitro cytotoxicity test revealed that the MnFe2O4 NPs were biocompatible at a particle concentration below 200 μg/mL. The transverse relaxivity of MnFe2O4 NPs in water and cells after incubation were determined to be 189.3 mm−1 s−1 and 36.8 mm−1 s−1 based on iron concentration, respectively. In vivo MR imaging studies in conjunction with inductively coupled plasma-atomic emission spectroscopy showed that the MnFe2O4 NPs were preferentially accumulated in liver after intravenous injection for 4 h. This suggests that the developed MnFe2O4 NPs can serve as a sensitive MR imaging contrast agent for liver imaging. By appropriately modifying or functionalizing the surface of the NPs, these particles may be used for MR detection of other diseases.

Keywords
Manganese ferrite; Nanoparticles; MR imaging
First Page Preview
Water-soluble superparamagnetic manganese ferrite nanoparticles for magnetic resonance imaging
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 31, Issue 13, May 2010, Pages 3667–3673
Authors
, , , , , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us