fulltext.study @t Gmail

The use of RANKL-coated brushite cement to stimulate bone remodelling

Paper ID Volume ID Publish Year Pages File Format Full-Text
9769 645 2008 7 PDF Available
Title
The use of RANKL-coated brushite cement to stimulate bone remodelling
Abstract

Calcium phosphate cements were first proposed as synthetic bone substitutes over two decades ago, however, they are characterised by slow chemical or cellular resorption and a slow osteointegration. In contrast, bone autograft has been shown to stimulate osteoclastogenesis and angiogenesis resulting in active bone remodelling and rapid graft incorporation. Therefore, we aimed to develop a biomaterial able to release a key stimulator of the bone remodelling process, cytokine RANKL. Cylinders of brushite cement, hydroxyapatite cement and sodium alginate were loaded with RANKL either by incorporation into the cement or by coating the material with soluble RANKL. To test the biological activity of these formulations, we assessed their effectiveness in inducing osteoclast formation from RAW 264.7 monocytic cell line. Only brushite and hydroxyapatite cements coated with RANKL allowed for retaining sufficient biological activity to induce osteoclast formation. Most efficient was coating 40 mg cylinder of brushite cement with 800 ng RANKL. We have found that RANKL-coated brushite cement exhibits osteoclastogenic activity for at least 1 month at 37 °C. Thus, we developed a formulation of brushite cement with RANKL – a synthetic bone graft that is similar to autografts in its ability to actively induce osteoclastogenesis.

Keywords
Calcium phosphate cement; Brushite; RANKL; Osteoclast; Controlled drug release
First Page Preview
The use of RANKL-coated brushite cement to stimulate bone remodelling
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 29, Issue 22, August 2008, Pages 3253–3259
Authors
, , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us