fulltext.study @t Gmail

Biodegradable arginine-based poly(ester-amide)s as non-viral gene delivery reagents

Paper ID Volume ID Publish Year Pages File Format Full-Text
9771 645 2008 9 PDF Available
Title
Biodegradable arginine-based poly(ester-amide)s as non-viral gene delivery reagents
Abstract

A novel family of synthetic biodegradable poly(ester-amide)s (Arg-PEAs) was evaluated for their biosafety and capability to transfect rat vascular smooth muscle cells, a major cell type participating in vascular diseases. Arg-PEAs showed high binding capacity toward plasmid DNA, and the binding activity was inversely correlated to the number of methylene groups in the diol segment of Arg-PEAs. All Arg-PEAs transfected smooth muscle cells with an efficiency that was comparable to the commercial transfection reagent Superfect®. However, unlike Superfect®, Arg-PEAs, over a wide range of dosages, had minimal adverse effects on cell morphology, viability or apoptosis. Using rhodamine-labeled plasmid DNA, we demonstrated that Arg-PEAs were able to deliver DNA into nearly 100% of cells under optimal polymer-to-DNA weight ratios, and that such a high level of delivery was achieved through an active endocytosis mechanism. A large portion of DNA delivered, however, was trapped in acidic endocytotic compartments, and subsequently was not expressed. These results suggest that with further modification to enhance their endosome escape, Arg-PEAs can be attractive candidates for non-viral gene carriers owning to their high cellular uptake nature and reliable cellular biocompatibility.

Keywords
Gene transfer; Nanoparticle; Smooth muscle cell; MTT assay; Image analysis; Fluorescence
First Page Preview
Biodegradable arginine-based poly(ester-amide)s as non-viral gene delivery reagents
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 29, Issue 22, August 2008, Pages 3269–3277
Authors
, , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us