fulltext.study @t Gmail

Efficient intracellular delivery of functional proteins using cationic polymer core/shell nanoparticles

Paper ID Volume ID Publish Year Pages File Format Full-Text
9797 647 2008 9 PDF Available
Title
Efficient intracellular delivery of functional proteins using cationic polymer core/shell nanoparticles
Abstract

Cationic core/shell nanoparticles self-assembled from biodegradable, cationic and amphiphilic copolymer poly{N-methyldietheneamine sebacate)-co-[(cholesteryl oxocarbonylamido ethyl) methyl bis(ethylene) ammonium bromide] sebacate}, P(MDS-co-CES), were fabricated and employed to deliver lectin A-chain, an anticancer glycoprotein. Lectin A-chain was efficiently bound onto the surfaces of the nanoparticles at high mass ratios of nanoparticles to lectin A-chain. The nanoparticle/lectin A-chain complexes had an average size of approximately 150 nm with zeta potential of about +30 mV at the mass ratio of 50 or above while the BioPorter/lectin A-chain complexes had a larger particle size and relatively lower zeta potential (150 nm vs. 455 nm; +30 mV vs. +20 mV). Therefore, the cellular uptake of nanoparticle/lectin A-chain complexes was much greater than that of BioPorter/lectin A-chain complexes. The results obtained from cytotoxicity tests show that lectin A-chain delivered by the nanoparticles was significantly more toxic against MDA-MB-231, HeLa, HepG2 and 4T1 cell lines when compared to BioPorter, and IC50 of lectin A-chain delivered by the nanoparticles was 0.2, 0.5, 10 and 50 mg/l, respectively, while that of lectin A-chain delivered by BioPorter was higher than 100 mg/l in all cell lines tested. These nano-sized particles may provide an efficient approach for intracellular delivery of biologically active proteins.

Keywords
Cationic core/shell nanoparticles; Intracellular delivery; Proteins; Lectin
First Page Preview
Efficient intracellular delivery of functional proteins using cationic polymer core/shell nanoparticles
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 29, Issue 9, March 2008, Pages 1224–1232
Authors
, , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us