fulltext.study @t Gmail

A biomimetic hydrogel based on methacrylated dextran-graft-lysine and gelatin for 3D smooth muscle cell culture

Paper ID Volume ID Publish Year Pages File Format Full-Text
9819 648 2010 13 PDF Available
Title
A biomimetic hydrogel based on methacrylated dextran-graft-lysine and gelatin for 3D smooth muscle cell culture
Abstract

Many synthetic hydrogels for cell encapsulation have hitherto been based on polyethylene glycol which is non-natural, non-biodegradable and only terminal-functionalizable, all of which are drawbacks for tissue engineering or cell delivery. The polysaccharide dextran is also highly hydrophilic but biodegradable and pendant-functionalizable and more closely resembles glycosaminoglycans to mimic the natural extracellular matrix. This study reports synthesis of a methacrylate and lysine functionalized dextran and development of hydrogel composite systems based on this material and methacrylamide modified gelatin. The mechanical stiffness and degree of swelling of the hydrogels were varied by manipulation of the degree of functionalization of dextran and gelatin and concentration/composition of precursor solution. Human umbilical artery smooth muscle cells (SMCs) were encapsulated inside hydrogels during gel hardening with photopolymerization. Rapid cell spreading, extensive cellular network formation and high SMC proliferation occurred within softer hydrogels (with shear storage moduli ranging from 898 to 3124 Pa). The encapsulated SMCs appear to be relatively contractile in the initial culture than on tissue culture polystyrene dish due to physical constraint imposed by the hydrogels but they become more synthetic with time possibly due to the inability of cells to reach confluence inside these cell-mediated degradable hydrogels. From the impressive cell proliferation and network formation, these new hydrogels combining polysaccharide and protein derivatives appear to be excellent candidates for further development as bioactive scaffolds for use in vascular tissue engineering and regeneration.

Keywords
Hydrogels; Smooth muscle cell; Encapsulation; Dextran; Proliferation; Gelatin
First Page Preview
A biomimetic hydrogel based on methacrylated dextran-graft-lysine and gelatin for 3D smooth muscle cell culture
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 31, Issue 6, February 2010, Pages 1158–1170
Authors
, ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us