fulltext.study @t Gmail

The relationship between fibroblast growth and the dynamic stiffnesses of a DNA crosslinked hydrogel

Paper ID Volume ID Publish Year Pages File Format Full-Text
9823 648 2010 14 PDF Available
Title
The relationship between fibroblast growth and the dynamic stiffnesses of a DNA crosslinked hydrogel
Abstract

The microenvironment of cells is dynamic and undergoes remodeling with time. This is evident in development, aging, pathological processes, and at tissue-biomaterial interfaces. But in contrast, the majority of the biomimetic materials have static properties. Here, we show that a previously developed DNA crosslinked hydrogel circumvents the need of environmental factors and undergoes controlled stiffness change via DNA delivery, a feasible approach to initiate property changes in vivo, different from previous attempts. Two types of fibroblasts, L929 and GFP, were subject to the alterations in substrate rigidity presented in the hydrogels. Our results show that exogenous DNA does not cause appreciable cell shape change. Cells do respond to mechanical alterations as demonstrated in the cell projection area and polarity (e.g., Soft vs. Soft → Medium), and the responses vary depending on magnitude (e.g., Soft → Medium vs. Soft → Stiff) and range of stiffness changes (e.g., Soft → Medium vs. Medium → Stiff). The two types of fibroblasts share specific responses in common (e.g., Soft → Medium), while differ in others (e.g., Medium → Stiff). For each cell type, the projection area and polarity respond differently. This approach provides insight into pathology (e.g., cancer) and tissue functioning, and assists in designing biomaterials with controlled dynamic stiffness by choosing the range and magnitude of stiffness change.

Keywords
Dynamic stiffness; DNA crosslinked hydrogels; Crosslinking density; Projection area; Aspect ratio; FAK expression
First Page Preview
The relationship between fibroblast growth and the dynamic stiffnesses of a DNA crosslinked hydrogel
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 31, Issue 6, February 2010, Pages 1199–1212
Authors
, , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us