fulltext.study @t Gmail

Three-dimensional polymer scaffolds for high throughput cell-based assay systems

Paper ID Volume ID Publish Year Pages File Format Full-Text
9867 650 2008 11 PDF Available
Title
Three-dimensional polymer scaffolds for high throughput cell-based assay systems
Abstract

Many whole cell-based assays in use today rely on flat, two-dimensional (2D) glass or plastic substrates that may not produce results characteristic of in vivo conditions. In this study, a three-dimensional (3D) cell-based assay platform was established by integrating 3D synthetic polymer scaffolds with standard cell culture dishes and multi-well plates. This technology can be used to feasibly modify any traditional 2D cell-based assay vessels for 3D cell-based assay with currently used high throughput screening (HTS) systems. We examined neural stem (NS) cells' growth profile, morphology, cell–matrix interaction, gene expression and voltage gated calcium channel (VGCC) functionality of this novel 3D assay platform. Our results showed that unlike the NS cells cultured on traditional 2D planar surfaces, cells in 3D scaffolds are more physiologically relevant with respect to in vivo characteristics exhibited by in-vivo surrogates such as neural spheres. This new biomimetic cell-based assay platform may provide a broadly applicable 3D cell-based system for use in drug discovery programs and other research fields.

Keywords
Biomimetic material; ECM; Cell culture; Scaffold; Stem cell
First Page Preview
Three-dimensional polymer scaffolds for high throughput cell-based assay systems
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 29, Issue 18, June 2008, Pages 2802–2812
Authors
, , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us