fulltext.study @t Gmail

The morphology of anisotropic 3D-printed hydroxyapatite scaffolds

Paper ID Volume ID Publish Year Pages File Format Full-Text
9876 651 2008 8 PDF Available
Title
The morphology of anisotropic 3D-printed hydroxyapatite scaffolds
Abstract

Three-dimensional (3D) scaffolds with tailored pores ranging from the nanometer to millimeter scale can support the reconstruction of centimeter-sized osseous defects. Three-dimensional-printing processes permit the voxel-wise fabrication of scaffolds. The present study rests upon 3D-printing with nano-porous hydroxyapatite granulates. The cylindrical design refers to a hollow bone with higher density at the periphery. The millimeter-wide central channel follows the symmetry axis and connects the perpendicularly arranged micro-pores. Synchrotron radiation-based micro computed tomography has served for the non-destructive characterization of the scaffolds. The 3D data treatment is essential, since, for example, the two-dimensional distance maps overestimate the mean distances to the material by 33–50% with respect to the 3D analysis. The scaffolds contain 70% micrometer-wide pores that are interconnected. Using virtual spheres, which might be related to the cells migrating along the pores, the central channel remains accessible through the micro-pores for spheres with a diameter of up to (350 ± 35) μm. Registering the tomograms with their 3D-printing matrices has yielded the almost isotropic shrinking of (27 ± 2)% owing to the sintering process. This registration also allows comparing the design and tomographic data in a quantitative manner to extract the quality of the fabricated scaffolds. Histological analysis of the scaffolds seeded with osteogenic-stimulated progenitor cells has confirmed the suitability of the 3D-printed scaffolds for potential clinical applications.

Keywords
Hydroxyapatite; Image analysis; Porosity; Scaffold; Synchrotron radiation-based micro computed tomography; Three-dimensional-printing
First Page Preview
The morphology of anisotropic 3D-printed hydroxyapatite scaffolds
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 29, Issue 28, October 2008, Pages 3799–3806
Authors
, , , , , , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us