fulltext.study @t Gmail

The effect of cyclic strain on embryonic stem cell-derived cardiomyocytes

Paper ID Volume ID Publish Year Pages File Format Full-Text
9959 655 2008 13 PDF Available
Title
The effect of cyclic strain on embryonic stem cell-derived cardiomyocytes
Abstract

Cardiomyocytes in the body are subjected to cyclic mechanical strain induced by the rhythmic heart beating. In this study, we tested the hypothesis that cyclic strain promotes cardiomyogenesis of embryonic stem cell-derived cardiomyocytes (ESCs). ESCs cultured on elastic polymer [poly(lactide-co-caprolactone), PLCL] scaffolds subjected to cyclic strain in vitro displayed elevated cardiac gene expression compared to unstrained controls. Six weeks after implantation into infarcted rat myocardium, the elastic cardiac patches (ESC-seeded PLCL scaffolds) showed reduced fibrotic tissue formation, likely due to a combination of lower apoptotic activity, higher vascular endothelial growth factor (VEGF) expression, and more extensive angiogenesis in the strained versus unstrained control [ESC-seeded, non-elastic poly(lactide-co-glycolide) scaffolds] patches. Importantly, cardiac gene expression was upregulated in the elastic patches compared to control, with evidence for cardiomyocyte-specific microstructures including myofibrillar bundles and Z-lines. This study shows that the use of an elastic polymer scaffold designed to permit mechanical strain transduction as a cell transplantation vehicle significantly increases cardiomyogenesis of the implanted ESCs.

Keywords
Cardiac patch; Cardiomyogenesis; Cyclic strain; Embryonic stem cell-derived cardiomyocytes
First Page Preview
The effect of cyclic strain on embryonic stem cell-derived cardiomyocytes
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 29, Issue 7, March 2008, Pages 844–856
Authors
, , , , , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us