fulltext.study @t Gmail

Immobilization of urokinase on the islet surface by amphiphilic poly(vinyl alcohol) that carries alkyl side chains

Paper ID Volume ID Publish Year Pages File Format Full-Text
9976 656 2008 6 PDF Available
Title
Immobilization of urokinase on the islet surface by amphiphilic poly(vinyl alcohol) that carries alkyl side chains
Abstract

Transplantation of islets of Langerhans (islets) is a promising method to treat insulin-dependent diabetes mellitus (type I diabetes). However, insulin independence is typically realized for only ∼30% of transplant recipients, even with sufficient numbers of islets from multiple donors. Innate immunological reactions triggered by blood coagulation play a key role in the loss of islets at the early stage. Here we propose a method to inhibit blood coagulation on the islet surface. A plasminogen activator, urokinase, was immobilized on the islet surface via a poly(vinyl alcohol) (PVA) derivative that carries alkyl chains and thiol groups. When the PVA derivative was added to an islet suspension, the alkyl side chains spontaneously anchored into the lipid bilayer membranes of islet cells. The surfaces of islets were covered with the PVA derivative. Urokinase modified with maleimide groups could be immobilized onto the islet surface by thiol/maleimide bonding with the layer of PVA derivatives. Urokinase-immobilized islets exhibited fibrinolytic properties, indicating that blood coagulation can be controlled on the islet surface. Urokinase immobilization on islets, which does not impair insulin release, represents a promising method to reduce early graft loss after intraportal islet transplantation.

Keywords
Islet; Poly(vinyl alcohol); Urokinase; Surface modification; Transplantation
First Page Preview
Immobilization of urokinase on the islet surface by amphiphilic poly(vinyl alcohol) that carries alkyl side chains
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 29, Issue 19, July 2008, Pages 2878–2883
Authors
, , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us