fulltext.study @t Gmail

The influence of electrospun aligned poly(ɛ-caprolactone)/collagen nanofiber meshes on the formation of self-aligned skeletal muscle myotubes

Paper ID Volume ID Publish Year Pages File Format Full-Text
9979 656 2008 8 PDF Available
Title
The influence of electrospun aligned poly(ɛ-caprolactone)/collagen nanofiber meshes on the formation of self-aligned skeletal muscle myotubes
Abstract

Current treatment options for restoring large skeletal muscle tissue defects due to trauma or tumor ablation are limited by the host muscle tissue availability and donor site morbidity of muscle flap implantation. Creation of implantable functional muscle tissue that could restore muscle defects may bea possible solution. To engineer functional muscle tissue for reconstruction, scaffolds that mimic native fibers need to be developed. In this study we examined the feasibility of using poly(ɛ-caprolactone) (PCL)/collagen based nanofibers using electrospinning as a scaffold system for implantable engineered muscle. We investigated whether electrospun nanofibers could guide morphogenesis of skeletal muscle cells and enhance cellular organization. Nanofibers with different fiber orientations were fabricated by electrospinning with a blend of PCL and collagen. Human skeletal muscle cells (hSkMCs) were seeded onto the electrospun PCL/collagen nanofiber meshes and analyzed for cell adhesion, proliferation and organization. Our results show that unidirectionally oriented nanofibers significantly induced muscle cell alignment and myotube formation as compared to randomly oriented nanofibers. The aligned composite nanofiber scaffolds seeded with skeletal muscle cells may provide implantable functional muscle tissues for patients with large muscle defects.

Keywords
Polycaprolactone; Collagen; Electrospinning; Cell alignment; Myotube formation; Tissue engineering
First Page Preview
The influence of electrospun aligned poly(ɛ-caprolactone)/collagen nanofiber meshes on the formation of self-aligned skeletal muscle myotubes
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 29, Issue 19, July 2008, Pages 2899–2906
Authors
, , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us